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“Science and Applications of Space-Based Soil Moisture
and Freeze-Thaw Observations”

or what are some of the compelling uses of the data?
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Mapping Evaporation and Recharge

Atmosphere
(~ 9 days)
Mixing

1. Fluxes that are first-order determinants of
biogeochemical cycles

2. Fluxes that to first-order determine and are determined
by vegetation distribution

Evaporation

3. Fluxes that have most dramatically changed already in Surface

response to human activity. (~30 days) /
Recharge

Discharge
4. Fluxes that link the slow and fast components of the
Subsurface
water cycle (~ 8 years)
5. Fluxes that limit rate of sustainable use of surface Blechemical

waters and groundwater aquifers | reedter |
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Potential Recharge

Potential Natural Recharge for the High Plains Aquifer in Kansas
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Strong links to:
a. topography,
b. vegetation,
c. partitioning among water balance
components at surface

Time-to-Depletion
. Estimated Usable Lifetime* for the High Plains Aquifer in Kansas 1" RsJanghr!a? ]'i‘:";‘senf;siﬁf;%‘gm ‘:':egss
Key to sustainable resource use. bkt s 3 oo
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Evaporation: Even Climatology is Unknown

Flux networks
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Key Determinants of Land Evaporation

Campbell Yolo Clay Field Experiment Site
Summer 1995, California _'_%

(Cahill et al., 1999)

10 20 30
Surface Soil Moisture [% Volume]
Measured by L-Band Radiometer

Latent heat flux (evaporation)
links the water, energy, and
carbon cycles at the surface.

All models of water and energy
balance (LSM or SVATSs) include
(explicitly or implicitly) a form
for the closure:

e.g., B(G)=E/Ep or ry(6)
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model grid cell and
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represents a normalized soil moisture availability term Fy = < A ?
where ©,, is the wilting point and ©__; is the field capac- =1 (O — ) (Z ﬂ'r:j)
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CLM

functional type and the soil water potential of each soil layer

B = E_ wr = 1107 (8.10)

where w, is a soil dryness or plant wilting factor for layer 7. and 7 is the fraction of roots

in layer 7.

“...Let the rate of loss of water from a leaf
be denoted by T, then

The plant wilting factor w; is

-

[l N r,|
W, =9 Wonax T Woar s ’ ]-' (811} T = K{F (gfeﬂf) - wair}
0 tor T =T .
. or & =4,) here K is the conductance of the stom-

atal openings and F (8,.4;) is the saturated
vapour density at 6.” [Richardson, 1922].
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Carbon Dioxide Exchange: Response to Drying
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1. Whatis the functional

form of the water-energy-
carbon balance closure?
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May 10: Dry soil. CI'ear with scattered to broken cirrus T mr——
May 18: 90 mm Rain 250 /

May 20: Moist soil. Mild winds and clear. SD"r’face Deep
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CASES'97, BAMS, 81(4), 2000. the evolution of the lower atmosphere.
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Sutton et al. (2007): Will Perturbing Soil Moisture Improve Warm-Season Ensemble Forecasts? A Proof of Concept,
Monthly Weather Review, 134, 3174-3189.

(a) Quantiles of Precipitation Differences (b) 2—-m Temp.
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“...changes to 5-km forecasts due to soil moisture differences were almost as large as the changes to 20-km forecasts
due to using an alternate convective parameterization, previously determined to be a large source of uncertainty in
ensemble forecasts...”

“...The results presented here suggest that short-term temperature and precipitation forecasts can indeed be

changed as a consequence of changing the soil moisture...”
10
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Seasonal Predictability: Memory of Land System
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Fischer et al. (2007): Soil Moisture—Atmosphere Interactions during the 2003 European Summer Heat Wave,

Journal of Climate, 20, 5089-5099.
a) DRY25-CTL b) WET25-CTL
Temperature (2m) [C] Temperature (2m) [C]
"—._‘

European heatwave cause
35,000 deaths, New
Scientist, Oct. 10, 2003

“...perturbed spring soil moisture shows that this quantity is an important parameter for the evolution of
European heat waves...”

“...Simulations indicate that without soil moisture anomalies the summer heat anomalies could have been
reduced by around 40% in some regions...”

12
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Seasonal Predictability Impacts
I\ f:cilis ure
Ensemble I |/ fixedt

Precipitation Soil moisture
Distributions: "'

2. What are the dominant
evaporation regimes?

Multi-Model Consensus of Regions Where Soil Moisture Impacts Seasonal Precipitation

Oy L ELE
GON| T e Y : = . |:||.3

30N | y; f. h Soaey ._ L £ .7
EQ| . l e | ot 0.6
a0s _ 0.5
BOS | | . 0.3
EUSf : Q.0

180 1204 Ll ] B 120E 180

Koster et al. (2004), Science, 305, 1138-1140.
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Operational Hydrology

Current NWS Operational Flash
Flood Guidance (FFG)

National Weather Service
Nebraska

3 Honr Flash Flood Guidance
Updated October 17, 2008 4:00 PM CDT

Empirical Surface Soil Moisture Deficit

APl =K-API_, +P,

Current Operational Drought Indices by NOAA
and National Drought Mitigation Center (NDMC)

Drought Severity Index by Division
Weekly Value for Period Ending OCT 11, 2008
Long Term Palmer

. %
{ Climate Prediction Center, NOAA ¥ ﬂg H‘\

[]1+2.0 to +2.9 (Unusual Moist Spell)
[ +3.0 to +3.9 (Very Moist Spell)
M +4.0 and above (Extremely Maist)

[71-4.0 or less (Extreme Drought)
[0-3.0 te -3.9 (Severe Drought !
[]-2.0 te -2.9 (Moderate Drought)
[[]-1.9 ta +1.9 (Near Normal)

Empirical Surface Soil
Moisture Anomaly

Meteorological Drowght

Palmer, 1965

3. How to prepare grounds for modernization of operational services?




I"lii Imperative for Climate Change Science

Massachusetts
Institute of
Technology

GISS—-EH

Li et al., (2007): Evaluation of IPCC AR4 soil
moisture simulations for the second half of the
twentieth century,
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First Generation: Second Generation: Third Generation:

Water Availability as Heat and Moisture Flux Add Carbon Exchange

a Reservoir Across Resistance to Canopy Fluxes
Networks

R. Stockli and P. L. Vidale (ETH)
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4. LSM (even with runoff output calibration) fail as scientific tools.
With what protocols will observations of the state variable change that?
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1. Combine varied information sources
2. Estimate fluxes and other derived variables

\
Microwave Soil » T
Moisture Sensing D CBD
Vis/IR Vegetation > é' %
SRTM DEM Sefsing Radar & GPM | O
0 Precipitation ) %
)
2>1V e
S = . Total
% © / Variability
PR
wn >

Precipitation-
Induced

| | .
10 m 100 m 1 km 10 km 100 km



I I I i
Massachusetts

Institute of
Technology

Sources of Variability

Soil type
Modeled variables and observations are combined in
proportion to their uncertainty. B Loam
[ loamy sand
Il Sandy Loam
In meteorology/oceanography no model error is [ Silt Loam
assigned since intrinsic chaos (growth modes) serve h
as model uncertainty.
Land cover

In hydrology parameters and micromet forcing are

. —
given error. Where and what amount? Closed Shrublands

[ Croplands
[ Deciduous Broadleaf Forest
[J Savannas

70

eoCumuIative true
“rainfall, t=90

Spatially correlated
precipitation and soil
properties (errors)
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SVD of the first layer soil moisture covariance matrix is performed at some typical times
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Ahanin et al. (MIT, 2007)
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5. How should uncertainties in models and observations be defined
to bring consistency to the data assimilation industry?
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1. What is the functional form of the water-energy-carbon balance
closure?

& i 2. What are the dominant evaporation regimes?

3. How to prepare grounds for modernization of operational services?

4. LSM (even with runoff output calibration) fail as scientific tools.
With what protocols will observations of the state variable change
that?

5. How should uncertainties in models and observations be defined to
bring consistency to the data assimilation industry?
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